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Many in Vitro studies have demonstrated that vitamin E
(mainly R-tocopherol,R-TOH) and provitamin A (â-carotene,
â-CAR, and other carotenoids) can act as free-radical trapping
antioxidants under appropriate conditions (homogeneous,1 het-
erogeneous,2 radical flux,3 oxygen partial pressure,4 etc). These
two classes of compounds are therefore presumed to function
as antioxidantsin ViVo even when (as with carotenoids) this is
clearly not their prime role. Attention has also focused on
interactions between antioxidants, such as the “regeneration”
of R-TOH from its radical,R-TO•, by ascorbate, AH-, reaction
1, under biomimetic (heterogeneous) conditions.2,3,5 In this

Journal it was recently claimed6 that R-TOH could also be
regenerated fromR-TO• by â-CAR (and other carotenoids),
reaction 2, at close to the diffusion-controlled limit (k2 ) 1.0

× 1010 M-1 s-1). This claim was based on pulse radiolysis of
hexane solutions ofR-TOH and â-CAR with time resolved
monitoring of transients attributed toâ-CAR•+ in the near
infrared. We decided to check whether reaction 2 occurred at
all (let alone at the diffusion-controlled rate) for three reasons:
(i) there is a current high level of interest in oxidative stress
and biological antioxidants,7 (ii) mechanistic conclusions should
not be based solely on the optical monitoring of transient
intermediates, and (iii) it has already been demonstrated that
â-CAR can be protected against autoxidation byR-TOH8 (rather
than the reverse). We chose EPR spectroscopy because this
allowsR-TO• to be identified and monitored in an unambiguous
manner.

In the first set of experiments,9 R-TO• was generated within
the cavity of an EPR spectrometer by reaction ofR-TOH (1.35
mM) with the 1,1-diphenyl-2-picrylhydrazyl radical, DPPH• (1.3
× 10-5 M) at 25°C, reaction 3.10,11 In hexane and in benzene
reaction 3 was too fast to be monitored, but the maximum

concentrations ofR-TO• (ca. 1.2× 10-5 M), and the decay
traces were the same with or without 0.5 or 1 mMâ-CAR. The
solvent was changed to anisole to reduce the rate of reaction
3,11 and in an otherwise identical matched pair of experiments
the rates of growth ofR-TO•,12 the maximum concentration of
R-TO• (ca. 1.0× 10-5 M), and the concentration/time curves
were identical with or without 1 mMâ-CAR (see Figure 1).

In the second set of experiments,13 R-TO• was generated
within the cavity of an EPR spectrometer by reaction ofR-TOH
(1.3 mM) with photochemically generatedtert-butoxyl radicals,
BO•, at 25 °C in hexane/di-tert-butyl peroxide (BOOB) (9:1,
v/v) and in benzene/BOOB (9:1, v/v). On cutting off the light,
theR-TO• EPR signal decayed, reaction 5, with second-order
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R-TO• + AH- f R-TOH+ A•- (1)

R-TO• + â-CAR98
H+

hexane
R-TOH+ â-CAR•+ (2)

Figure 1. Time evolution ofR-TO• generated in anisole/BOOB (9:1,
v/v) from R-TOH in the absence (a) and in the presence (b) of 1.0 mM
â-CAR after injection of DPPH•. EPR signal intensities (I) are reported
on the same scale.

R-TOH+ DPPH• f R-TO• + DPPH2 (3)
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kinetics, 2kobs ) 6.6 × 103 M-1 s-1, in excellent agreement
with earlier work14 using the same sample ofR-TOH. (A minor

impurity present in allR-TOH samples plays a major role in
determining the rate of reaction 5.10) Injection of a concentrated
solution ofâ-CAR in the same solvent mixture (to give [â-CAR]
) 0.5 or 1 mM) immediately after shutting off the light did not
change theR-TO• decay rate (see, e.g., Figure 2). Since electron
transfer reactions (putative reaction 2) are favored in more polar
solvents, the same experiment was performed in acetonitrile/
BOOB (9:1, v/v). Once again, the injection ofâ-CAR to a final
concentration of ca. 1 mM did not change the rate of decay of
R-TO• (see Supporting Information). Finally, and to validate
this method for detecting acceleratedR-TO• decay, a concen-
trated solution of 2,6-di-tert-butyl-4-methylphenol (ArOH, final
concentration 0.25 M) was injected immediately after cutting
off the light. This produced an “instantaneous” (<1 s) loss of
the R-TO• signal (see insert in Figure 2), reaction 6. From

literature data,15 k6 can be estimated to bee5 × 103 M-1 s-1,
corresponding to a pseudo-first-order decay rate constant for
R-TO• e1.3× 103 s-1. This value is very much lower than
the calculated pseudo-first-order rate constant of 107 s-1 which
would be produced by 10-3 M â-CAR if reaction 2 occurred
with its proposed rate constant of 1× 1010 M-1 s-1.6

We conclude thatâ-CAR, and in all probability other
carotenoids, do not regenerateR-TOH from R-TO• and that
reaction 2 does not occur. The mechanism by which the
transients observed by Truscott and co-workers6 were formed
remains to be elucidated. Our work points up the “danger” of
drawing mechanistic conclusions based solely on the UV,
visible, or near IR spectra of transients.
The procedures we employed to disprove reaction 2 rely on

the fact thatR-TO• is persistent. They cannot, therefore, be
applied to check a somewhat more reasonable claim by
Mortensen and Skibsted17 that the transient and much more
reactive phenoxyl radical reacts withâ-CAR, though the
reported rate constants appear to us to be improbably large.18

Addendum (by Truscott, T. G.; Edge, R.; Land, E. J.;
McGarvey, D. J.; Dodd, N. Department of Chemistry, Keele
University, Keele ST5 5BG, U.K.): We have confirmed the
EPR results reported above which demonstrated that the rate
of decay ofR-TO• in hexane and in benzene is not influenced
by â-CAR. However, pulse radiolysis (PR) ofR-TOH +
â-CAR in both these solvents indicates thatâ-CAR•+ is formed
very rapidly. Some possible explanations for the PR observa-
tions (e.g., thatR-TOH•+ rather thanR-TO• is involved) will
be explored, and the results will be reported in a full paper.
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Supporting Information Available: A detailed experimental
section and kinetic traces for the decay ofR-TO• in hexane and in
acetonitrile in the presence and absence ofâ-CAR (4 pages). See any
current masthead page for ordering and Internet access instructions.
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Figure 2. Second-order decay of photolytically generatedR-TO• in
benzene/BOOB (9:1, v/v) in the absence and presence of 1.0 mM
â-CAR (main) and of 0.25 M ArOH (inset). The EPR signal in the
main plot has been converted to absolute radical concentrations after
calibration of the spectrometer response.
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